

MAJOR COURSES

40. Big Data Analytics for Remote Sensing (PH053IU)

Module designation	The aim of the course is to get students familiar with high- performance computing aspects of remote sensing. Students will learn how to discover knowledge from remote sensing data with high-performance computing approaches and data visual analytics tools (Apache Hadoop, parallel Python, R, Google Earth Engine).
Semester(s) in which the module is taught	1, 2
Person responsible for the module	Dr. Lê Thanh Vân
Language	English
Relation to curriculum	Compulsory
Teaching methods	Lecture, assignment, project.
Workload (incl. contact hours, self-study hours)	(Estimated) Total workload: 127.5 Contact hours (please specify whether lecture, exercise, laboratory session, etc.): lecture: 37.5 Private study including examination preparation, specified in hours: 90
Credit points/ECTS	3 credits/4.62 ECTS
Required and recommended prerequisites for joining the module	Previous Course: Programming for engineers (EE057IU), Earth Observation and Environment (PH027IU), Remote Sensing (PH036IU)

Module objectives/intended learning outcomes	Upon the successful completion of this course students will be able to:		
	Competency level	Course learning outcome (CLO)	
	Knowledge	CLO1. Develop algorithms of analyzing big data in remote sensing using high- performance computing approaches and data visual analytics tools.	
	Skill	CLO2. Analyze data to make conclusions to engineering problems in big data and remote sensing.	
	Attitude	CLO3. Show abilities of further self- learning and lifelong learning.	

Content	The description of the contents should clearly indicate the weighting of the content and the level.			
	Weight: lecture session (3 hours)			
	Teaching levels: I (Introduce); T (Teach); U (Utilize)			
	Торіс	Weight	Level	
	Introduction to remote sensing big data	1	I, T	
	Infrastructure and high- performance computing for remote sensing data	2	I, T	
	Hadoop and Map Reduce	2	I, T	
	Distributed database	1	T, U	
	The computing platforms: parallel computing (CPUs and GPUs), Cloud computing	1	T, U	
	Python for Big Data	2	T, U	
	R - advanced spatial statistics for remote sensing big data	1	T, U	
	Remote sensing image handling: Image Enhancement, Data Mining	2	T, U	
	The open platform: Google Earth Engine	2	T, U	
	Final project: Thematic mapping from remote sensing big data	1	U	
Examination forms	Short answer question, project.			
Study and examination requirements	Attendance: A minimum attendance of 80 percent compulsory for the class sessions. Students will be assessed on the basis of their class participation. Questions and comments are strongly encouraged.			
	Assignments/Examination: Students must have more than 50/100 points overall to pass this course.			

Reading list	Textbooks:	
	[1] <i>Big Data: Techniques and Technologies in Geoinformatics</i> , Hassan A. Karimi (editor), 2014, CRC Press.	
	References:	
	[2] <i>High Performance Computing in Remote Sensing,</i> <i>Antonio</i> J. Plaza and Chein-I Chang (editors), 2008, Chapman & Hall/CRC Computer and Information Science Series.	
	[3] <i>Hadoop: The Definitive Guide</i> , 2nd edition, Tom White, 2011, O'Reilly.	
	[4] An Introduction to R for Spatial Analysis and Mapping (Spatial Analytics and GIS), Chris Brunsdon, Lex Comber, second edition	
	[5] Big Data Analysis with Python: Combine Spark and Python to unlock the powers of parallel computing and machine learning, Ivan Marin, Ankit Shukla, Sarang VK, 2019	
	Software:	